Beyond Markov: Accounting for Independence Violations in Causal Reasoning
نویسنده
چکیده
Although many theories of causal cognition are based on causal graphical models, a key property of such models-the independence relations stipulated by the Markov condition-is routinely violated by human reasoners. This article presents three new accounts of those independence violations, accounts that share the assumption that people's understanding of the correlational structure of data generated from a causal graph differs from that stipulated by causal graphical model framework. To distinguish these models, experiments assessed how people reason with causal graphs that are larger than those tested in previous studies. A traditional common cause network (Y1←X→Y2) was extended so that the effects themselves had effects (Z1←Y1←X→Y2→Z2). A traditional common effect network (Y1→X←Y2) was extended so that the causes themselves had causes (Z1→Y1→X←Y2←Z2). Subjects' inferences were most consistent with the beta-Q model in which consistent states of the world-those in which variables are either mostly all present or mostly all absent-are viewed as more probable than stipulated by the causal graphical model framework. Substantial variability in subjects' inferences was also observed, with the result that substantial minorities of subjects were best fit by one of the other models (the dual prototype or a leaky gate models). The discrepancy between normative and human causal cognition stipulated by these models is foundational in the sense that they locate the error not in people's causal reasoning but rather in their causal representations. As a result, they are applicable to any cognitive theory grounded in causal graphical models, including theories of analogy, learning, explanation, categorization, decision-making, and counterfactual reasoning. Preliminary evidence that independence violations indeed generalize to other judgment types is presented.
منابع مشابه
The Causal Sampler: A Sampling Approach to Causal Representation, Reasoning, and Learning
Although the causal graphical model framework has achieved success accounting for numerous causal-based judgments, a key property of these models, the Markov condition, is consistently violated (Rehder, 2014; Rehder & Davis, 2016). A new process model—the causal sampler—accounts for these effects in a psychologically plausible manner by assuming that people construct their causal representation...
متن کاملDoes non-correlation imply non-causation?
The Markov condition describes the conditional independence relations present in a causal model that are consequent to its graphical structure, whereas the faithfulness assumption presumes that there are no other independencies in the model. Cartwright argues that causal inference methods have limited applicability because the Markov condition cannot always be applied to domains, and gives an e...
متن کاملQuantum Models of Human Causal Reasoning 1 Running head: QUANTUM MODELS OF HUMAN CAUSAL REASONING Quantum Models of Human Causal Reasoning
Throughout our lives, we are constantly faced with a variety of causal reasoning problems. A challenge for cognitive modelers is developing a comprehensive framework for modeling causal reasoning across different types of tasks and levels of causal complexity. Causal graphical models (CGMs), based on Bayes’ calculus, have perhaps been the most successful at explaining and predicting judgments o...
متن کاملManipulation and the Causal Markov Condition
This paper explores the relationship between a manipulability conception of causation and the causal Markov condition (CM). We argue that violations of CM also violate widely shared expectations—implicit in the manipulability conception—having to do with the absence of spontaneous correlations. They also violate expectations concerning the connection between independence or dependence relations...
متن کاملIndependence and dependence in human causal reasoning.
Causal graphical models (CGMs) are a popular formalism used to model human causal reasoning and learning. The key property of CGMs is the causal Markov condition, which stipulates patterns of independence and dependence among causally related variables. Five experiments found that while adult's causal inferences exhibited aspects of veridical causal reasoning, they also exhibited a small but te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cognitive psychology
دوره 103 شماره
صفحات -
تاریخ انتشار 2016